Identification of growth processes involved in QTLs for tomato fruit size and composition
نویسندگان
چکیده
Many quantitative trait loci (QTLs) for quality traits have been located on the tomato genetic map, but introgression of favourable wild alleles into large fruited species is hampered by co-localizations of QTLs with antagonist effects. The aim of this study was to assess the growth processes controlled by the main QTLs for fruit size and composition. Four nearly isogenic lines (NILs) derived from an intraspecific cross between a tasty cherry tomato (Cervil) and a normal-tasting large fruit tomato (Levovil) were studied. The lines carried one (L2, L4, and L9) or five (Lx) introgressions from Cervil on chromosomes 1, 2, 4, and 9. QTLs for fruit size could be mainly associated with cell division processes in L2 and L9, whereas cell expansion was rather homogeneous among the genotypes, except Cervil for which the low expansion rate was attributed to low cell plasticity. The link between endoreduplication and fruit size remained unclear, as cell or fruit sizes were positively correlated with the cell DNA content, but not with the endoreduplication factor. QTLs for fruit composition reflected differences in water accumulation rather than in sugar accumulation, except in L9 for which the up-regulation of sucrose unloading and hexose transport and/or starch synthesis was suggested. This may explain the increased amount of carbon allocated to cell structures in L9, which could be related to a QTL for fruit texture. In Lx, these effects were attenuated, except on fruit size and cell division. Finally, the region on top of chromosome 9 may control size and composition attributes in tomato, by a combination of QTL effects on cell division, cell wall synthesis, and carbon import and metabolism.
منابع مشابه
A genetic map of candidate genes and QTLs involved in tomato fruit size and composition.
In order to screen for putative candidate genes linked to tomato fruit weight and to sugar or acid content, genes and QTLs involved in fruit size and composition were mapped. Genes were selected among EST clones in the TIGR tomato EST database (http://www.tigr.org/tdb/tgi/lgi/) or corresponded to genes preferentially expressed in the early stages of fruit development. These clones were located ...
متن کاملCombining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration
A mechanistic model predicting the accumulation of tomato fruit sugars was developed in order (i) to dissect the relative influence of three underlying processes: assimilate supply (S), metabolic transformation of sugars into other compounds (M), and dilution by water uptake (D); and (ii) to estimate the genetic variability of S, M, and D. The latter was estimated in a population of 20 introgre...
متن کاملThe genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon.
Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where currently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the clone...
متن کاملGenes that influence yield in tomato
Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly dete...
متن کاملIdentification of Linked Markers for Delayed Fruit Ripening in Tomato Using Simple Sequence Repeat (SSR) Markers
Tomato (Solanum lycopersicum L.) is an important vegetable crop and acts as model plant for fruit development studies. Besides that, post-harvest damage is a devastating phenomenon often associated with ripening process in tomato which in turn leads to greater yield loss. Understanding the genetics, molecular and biochemical pathways is the key to overcome the existing situation. In th...
متن کامل